

Welcome to RRMPG’s documentation!

	Introduction
	Idea

	You want to contribute?

	Contributors

	Contact

	Getting started
	Setting up Python

	Downloading the source code

	Setting up RRMPGs Python dependencies

	Installing the RRMPG package

	Documentation
	Models

	Tools

	Utils

	Data

	Examples
	Numba Speed-Test

	Model API Example

	Wiki

	How to contribute
	Spell checking

	Contribute to the wiki

	Contribute to the code base

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This repository is a work in progress repository.

Official documentation can be found here: http://rrmpg.readthedocs.io

Read the Idea section for further information about the background and aim of this project.

Idea

One of the fundamental parts of hydrology is rainfall-runoff-modelling. The task here is to model the response of a catchment to meteorological input data and to forecast the river discharge. There are different approaches to tackle the problem, namely: conceptual models, physical-based models and data-driven models.

Although this is taught at university, often hands-on experience is missing or is done on using very simple modelling approaches. One of the main reasons I see is, that most (at least the complex ones) hydrological models are implemented in Fortran but very few students of the field of hydrology know Fortran, when they first get in touch with RR-Models. So all they can probably do is simply apply a model to their data and play manually with parameter tuning, but not explore the model and see the effect of code changes.

This might be different if there would exist well performing implementations of hydrological models in a more simplistic and readable language, such as Python.
What was hindering this step was always the speed of Python and the nature of RR-Models - they mostly have to be implemented using loops over all timesteps. And well, big surprise: Pure Python and for-loops is not the best combination in terms of performance.

This could be changed e.g. by using Cython [http://cython.org/] for the hydrological model, but this again might hinder the code understanding, since Cython adds non-pythonic complexity to the code, which might be hard for beginners to understand and therefore play/experiment with the code.

Another option could be PyPy [http://pypy.org/]. The problem I see with PyPy is, that the user would be forced to install a different Python interpreter, while most I know of are quite comfortable using e.g. Anaconda [https://www.continuum.io/anaconda-overview].

Numba [http://numba.pydata.org/] is another way to speed up array-oriented and math-heavy Python code but without changing the language/interpreter and just by few code adaptions. Using numba, the code stays easily readable and therefore better understandable for novices. I won’t spend much time now on explaining how numba works, but I’ll definitely add further information in the future.
First performance comparisons between Fortran implementations and numba optimized Python code have shown, that the speed is roughly the same (Fortran is about ~1-2 times faster, using the GNU Fortran compiler).

Summary: The idea of this code repository is to provide fast (roughly the speed of Fortan) implementations of hydrological models in Python to make it easier to play and experiment with rainfall-runoff models.

You want to contribute?

At the moment I’m looking for a selection of hydrological models I’ll implement in Python. If you want to see any (your?) model in this project, feel free to contact me.
There is also a How to contribute section [http://rrmpg.readthedocs.io/en/latest/contribution.html] at the official documentation, were you can read more on the various ways you can contribute to this repository.

Contributors

I’ll add later a better looking section to the official documentation. For now I list everybody, who contributed to this repository here:

	Ondřej Čertík [https://github.com/certik] with pull request #3 [https://github.com/kratzert/RRMPG/pull/3]: Optimized Fortran code and compilation procedure for fair speed comparision.

	Daniel Klotz [https://github.com/danklotz] with pull request #4 [https://github.com/kratzert/RRMPG/pull/4] , #5 [https://github.com/kratzert/RRMPG/pull/4] and #9 [https://github.com/kratzert/RRMPG/pull/9]: All spell checking.

	Andrew MacDonald [https://github.com/amacd31] for providing HBV-Edu simulation data from the original MATLAB implementation (see ##10 [https://github.com/kratzert/RRMPG/issues/10])

	Martijn Visser [https://github.com/visr] with pull request #13 [https://github.com/kratzert/RRMPG/pull/13] to update the unittest for pandas 1.0

	Martin Gauch [https://github.com/gauchm] with pull request #14 [https://github.com/kratzert/RRMPG/pull/14] to fix a bug in the HBV model, when running multiple parameter sets at once.

Contact

Raise an issue here in this repository or contact me by mail f.kratzert(at)gmail.com

Getting started

Setting up Python

First of all you need to have Python. I highly recommend you to use Anaconda [https://www.continuum.io/downloads].
Go to their homepage and download and install the latest Python 3 installer.

Downloading the source code

Since this package is in the early stages of development I haven’t added it to PyPI, Pythons Package Index. Therefore you can’t install it at the moment using pip. For the moment you have to download the source code from GitHub. To do so you can either download the entire repository as .zip and extract it to any destination on your machine:

[image: _images/github_download_zip.png]
Or you use your terminal and the following commands:

git clone https://github.com/kratzert/RRMPG

Setting up RRMPGs Python dependencies

To use/develope this package, you have two different options:

	(recommended) You use a conda environment. In the main directory a file included (environment.yml) that will setup everything for you by the following command:

From the terminal go to the RRMPG main directory and enter:

conda env create -f environment.yml

You can then activate the environment by entering:

on linux and macOS
source activate rrmpg

on windows
activate rrmpg

To leave an environment enter

on linux and macOS
source deactivate

on windows
deactivate

	(not recommend but possible) You make sure that you have all dependencies installed in your normal/root environment.

The list of dependencies are:

	Python 3.x

	Numpy

	Matplotlib

	Numba

	Jupyter

	IPython

	Pandas

	Scipy

Installing the RRMPG package

To be able to import this package the usual way in your python environment, enter the following command in the terminal, assuming you are in the RRMPG root directory:

python setup.py install

This should install everything correctly.

To confirm, that everything worked as expected you can test the following lines of code:

start Python console
python

now in Python try the following
>>>from rrmpg.models import ABCModel

If no error is raised: Congratulations, you now can use the package on your local machine.

Documentation

	Models
	ABC-Model

	HBV education

	GR4J

	Cemaneige

	CemaneigeGR4J

	Tools
	Monte-Carlo

	Utils
	Plot utils

	Metrics

	Array Checks

	Data
	CAMELSLoader

Models

Documentation of all hydrological models implemented in the rrmpg.models module.

ABC-Model

Implementation of the model described in:

Myron B. Fiering "Streamflow synthesis" Cambridge, Harvard University
Press, 1967. 139 P. (1967).

Explanation of the model parameters:

	a: describes the fraction of precipitation that percolates through the soil to the groundwater.

	b: describes the fraction of the precipitaion that is directly lost to the atmosphere through evapotranspiration.

	c: describes the amount of groundwater that leaves the storage and drains into the stream.

Model inputs for simulation:

	prec: Array of (summed) precipitation for each timestep. [mm/day]

Class documentation

	
class rrmpg.models.ABCModel(params=None)

	Interface to the the ABC-Model.

This model implements the classical ABC-Model. It was developed for
educational purpose and represents a simple linear model.

	Original Publication:
	Myron B. Fiering “Streamflow synthesis” Cambridge, Harvard University
Press, 1967. 139 P. (1967).

If no model parameters are passed upon initialization, generates random
parameter set.

	Parameters

	params – (optional) Dictonary containing all model parameters as a
seperate key/value pairs.

	
fit(qobs, prec, initial_state=0)

	Fit the model to a timeseries of discharge using.

This functions uses scipy’s global optimizer (differential evolution)
to find a good set of parameters for the model, so that the observed
discharge is simulated as good as possible.

	Parameters

	
	qobs – Array of observed streaflow discharge.

	prec – Array of precipitation data.

	initial_state – (optional) Initial value for the storage.

	Returns

	A scipy OptimizeResult class object.

	Return type

	res

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	
get_default_bounds()

	Return the dictionary containing the default parameter bounds.

	
get_dtype()

	Return the custom model datatype.

	
get_parameter_names()

	Return the list of parameter names.

	
get_params()

	Return a dict with all model parameters and their current value.

	
get_random_params(num=1)

	Generate random sets of model parameters for the ABC-model.

The ABC-model has specific parameter constraints, therefore we will
overwrite the function of the BaseModel, to generated random model
parameters, that satisfy the ABC-Model constraints.

	Parameters

	num – (optional) Integer, specifying the number of parameter sets,
that will be generated. Default is 1.

	Returns

	A dict containing one key/value pair for each model parameter.

	
set_params(params)

	Set model parameters to values passed in params.

	Parameters

	params – Either a dictonary containing model parameters as
key/value pairs or a numpy array of the models own custom
dtype. For the case of dictionaries, they can contain only one
model parameter or many/all. The naming of the parameters must
be identical to the names specified in the _param_list.
All parameter values must be numerical.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any parameter is not a numerical value.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the parameter dictonary contains a key, that
 doesn’t match any of the parameter names.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the numpy array of the parameter does not fit the
 custom data type of the model or it’s neither a dict nor a
 numpy ndarray.

	
simulate(prec, initial_state=0, return_storage=False, params=None)

	Simulate the streamflow for the passed precipitation.

This function makes sanity checks on the input and then calls the
externally defined ABC-Model function.

	Parameters

	
	prec – Precipitation data for each timestep. Can be a List, numpy
array or pandas.Series

	initial_state – (optional) Initial value for the storage.

	return_storage – (optional) Boolean, wether or not to return the
simulated storage for each timestep.

	params – (optional) Numpy array of parameter sets, that will be
evaluated a once in parallel. Must be of the models own custom
data type. If nothing is passed, the parameters, stored in the
model object, will be used.

	Returns

	An array with the simulated stream flow for each timestep and
optional an array with the simulated storage.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

HBV education

Implementation of the model described in:

Aghakouchak, Amir, and Emad Habib. "Application of a conceptual hydrologic
model in teaching hydrologic processes." International Journal of
Engineering Education 26.4 (S1) (2010).

Explanation of the model parameters:

	T_t: Threshold temperature. Decides if snow is melting or accumulating.

	DD: Degree-day factor. Indicates the decrease of the water content in the snow cover.

	FC: Field capacity. Describes the maximum soil moisture storage in the subsurface zone.

	Beta: Shape coefficient. Controls the amount of liquid water (Precipitation + melting Snow), which contributes to runoff.

	C: Improves model performance, when mean daily temperature deviates considerably from long-term mean.

	PWP: Permanent Wilting Point. Is a soil-moisture limit for evapotranspiration.

	K_0: Near surface flow storage coefficient.

	K_1: Interflow storage coefficient. K_1 should be smaller than K_0.

	K_2: Baseflow storage coefficient. K_2 should be smaller than K_1.

	K_p: Percolation storage coefficient.

	L: Threshold of the water level in the upper storage.

Model inputs for simulation:

	temp: Array of (mean) temperature for each timestep.

	prec: Array of (summed) precipitation for each timestep. [mm/day]

	month: Array of integers indicating for each timestep to which month it belongs [1,2, …, 12]. Used for adjusted potential evapotranspiration.

	PE_m: long-term mean monthly potential evapotranspiration.

	T_m: long-term mean monthly temperature.

Class documentation

	
class rrmpg.models.HBVEdu(params=None)

	Interface to the educational version of the HBV model.

This class builds an interface to the HBV educational model as presented in
[1]. This model should only be used with daily data.

If no model parameters are passed upon initialization, generates random
parameter set.

	Parameters

	params – (optional) Dictonary containing all model parameters as a
seperate key/value pairs.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If a dictionary of model parameters is passed but one of
 the parameters is missing.

[1] Aghakouchak, Amir, and Emad Habib. “Application of a conceptual
hydrologic model in teaching hydrologic processes.” International Journal
of Engineering Education 26.4 (S1) (2010).

	
fit(qobs, temp, prec, month, PE_m, T_m, snow_init=0.0, soil_init=0.0, s1_init=0.0, s2_init=0.0)

	Fit the HBVEdu model to a timeseries of discharge.

This functions uses scipy’s global optimizer (differential evolution)
to find a good set of parameters for the model, so that the observed
discharge is simulated as good as possible.

	Parameters

	
	qobs – Array of observed streamflow discharge.

	temp – Array of (mean) temperature for each timestep.

	prec – Array of (summed) precipitation for each timestep.

	month – Array of integers indicating for each timestep to which
month it belongs [1,2, …, 12]. Used for adjusted
potential evapotranspiration.

	PE_m – long-term mean monthly potential evapotranspiration.

	T_m – long-term mean monthly temperature.

	snow_init – (optional) Initial state of the snow reservoir.

	soil_init – (optional) Initial state of the soil reservoir.

	s1_init – (optional) Initial state of the near surface flow
reservoir.

	s2_init – (optional) Initial state of the base flow reservoir.

	Returns

	A scipy OptimizeResult class object.

	Return type

	res

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeErrror – If the monthly arrays are not of size 12 or there
 is a size mismatch between precipitation, temperature and the
 month array.

	
get_default_bounds()

	Return the dictionary containing the default parameter bounds.

	
get_dtype()

	Return the custom model datatype.

	
get_parameter_names()

	Return the list of parameter names.

	
get_params()

	Return a dict with all model parameters and their current value.

	
get_random_params(num=1)

	Generate random sets of model parameters in the default bounds.

Samples num values for each model parameter from a uniform distribution
between the default bounds.

	Parameters

	num – (optional) Integer, specifying the number of parameter sets,
that will be generated. Default is 1.

	Returns

	A numpy array of the models custom data type, containing the at
random generated parameters.

	
set_params(params)

	Set model parameters to values passed in params.

	Parameters

	params – Either a dictonary containing model parameters as
key/value pairs or a numpy array of the models own custom
dtype. For the case of dictionaries, they can contain only one
model parameter or many/all. The naming of the parameters must
be identical to the names specified in the _param_list.
All parameter values must be numerical.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any parameter is not a numerical value.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the parameter dictonary contains a key, that
 doesn’t match any of the parameter names.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the numpy array of the parameter does not fit the
 custom data type of the model or it’s neither a dict nor a
 numpy ndarray.

	
simulate(temp, prec, month, PE_m, T_m, snow_init=0, soil_init=0, s1_init=0, s2_init=0, return_storage=False, params=None)

	Simulate rainfall-runoff process for given input.

This function bundles the model parameters and validates the
meteorological inputs, then calls the optimized model routine.
The meteorological inputs can be either list, numpy array or pandas
Series.

	Parameters

	
	temp – Array of (mean) temperature for each timestep.

	prec – Array of (summed) precipitation for each timestep.

	month – Array of integers indicating for each timestep to which
month it belongs [1,2, …, 12]. Used for adjusted
potential evapotranspiration.

	PE_m – long-term mean monthly potential evapotranspiration.

	T_m – long-term mean monthly temperature.

	snow_init – (optional) Initial state of the snow reservoir.

	soil_init – (optional) Initial state of the soil reservoir.

	s1_init – (optional) Initial state of the near surface flow
reservoir.

	s2_init – (optional) Initial state of the base flow reservoir.

	return_storage – (optional) Boolean, indicating if the model
storages should also be returned.

	params – (optional) Numpy array of parameter sets, that will be
evaluated a once in parallel. Must be of the models own custom
data type. If nothing is passed, the parameters, stored in the
model object, will be used.

	Returns

	An array with the simulated streamflow and optional one array for
each of the four reservoirs.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeErrror – If the monthly arrays are not of size 12 or there
 is a size mismatch between precipitation, temperature and the
 month array.

GR4J

Implementation of the model described in:

Perrin, Charles, Claude Michel, and Vazken Andréassian. "Improvement of a
parsimonious model for streamflow simulation." Journal of hydrology 279.1
(2003): 275-289.

Explanation of the model parameters:

	x1: maximum capacity of the production store [mm]

	x2: groundwater exchange coefficient [mm]

	x3: one day ahead maximum capacity of the routing store [mm]

	x4: time base of the unit hydrograph UH1 [days]

Model inputs for simulation:

	prec: Array of precipitation [mm/day]

	etp: Array mean potential evapotranspiration [mm]

Class documentation

	
class rrmpg.models.GR4J(params=None)

	Interface to the GR4J hydrological model.

This class builds an interface to the GR4J model, as presented in [1].
This model should only be used with daily data.

If no model parameters are passed upon initialization, generates random
parameter set.

[1] Perrin, Charles, Claude Michel, and Vazken Andréassian. “Improvement
of a parsimonious model for streamflow simulation.” Journal of hydrology
279.1 (2003): 275-289.

	Parameters

	params – (optional) Dictionary containing all model parameters as a
separate key/value pairs.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If a dictionary of model parameters is passed but one of
 the parameters is missing.

	
fit(qobs, prec, etp, s_init=0.0, r_init=0.0)

	Fit the GR4J model to a timeseries of discharge.

This functions uses scipy’s global optimizer (differential evolution)
to find a good set of parameters for the model, so that the observed
discharge is simulated as good as possible.

	Parameters

	
	qobs – Array of observed streamflow discharge [mm/day]

	prec – Array of daily precipitation sum [mm]

	etp – Array of mean potential evapotranspiration [mm]

	s_init – (optional) Initial value of the production storage as
fraction of x1.

	r_init – (optional) Initial value of the routing storage as fraction
of x3.

	Returns

	A scipy OptimizeResult class object.

	Return type

	res

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeErrror – If there is a size mismatch between the
 precipitation and the pot. evapotranspiration input.

	
get_default_bounds()

	Return the dictionary containing the default parameter bounds.

	
get_dtype()

	Return the custom model datatype.

	
get_parameter_names()

	Return the list of parameter names.

	
get_params()

	Return a dict with all model parameters and their current value.

	
get_random_params(num=1)

	Generate random sets of model parameters in the default bounds.

Samples num values for each model parameter from a uniform distribution
between the default bounds.

	Parameters

	num – (optional) Integer, specifying the number of parameter sets,
that will be generated. Default is 1.

	Returns

	A numpy array of the models custom data type, containing the at
random generated parameters.

	
set_params(params)

	Set model parameters to values passed in params.

	Parameters

	params – Either a dictonary containing model parameters as
key/value pairs or a numpy array of the models own custom
dtype. For the case of dictionaries, they can contain only one
model parameter or many/all. The naming of the parameters must
be identical to the names specified in the _param_list.
All parameter values must be numerical.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any parameter is not a numerical value.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the parameter dictonary contains a key, that
 doesn’t match any of the parameter names.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the numpy array of the parameter does not fit the
 custom data type of the model or it’s neither a dict nor a
 numpy ndarray.

	
simulate(prec, etp, s_init=0.0, r_init=0.0, return_storage=False, params=None)

	Simulate rainfall-runoff process for given input.

This function bundles the model parameters and validates the
meteorological inputs, then calls the optimized model routine.
The meteorological inputs can be either list, numpy arrays or pandas
Series.

	Parameters

	
	prec – Array of daily precipitation sum [mm]

	etp – Array of mean potential evapotranspiration [mm]

	s_init – (optional) Initial value of the production storage as
fraction of x1.

	r_init – (optional) Initial value of the routing storage as fraction
of x3.

	return_stprage – (optional) Boolean, indicating if the model
storages should also be returned.

	params – (optional) Numpy array of parameter sets, that will be
evaluated a once in parallel. Must be of the models own custom
data type. If nothing is passed, the parameters, stored in the
model object, will be used.

	Returns

	An array with the simulated streamflow and optional one array for
each of the two storages.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there is a size mismatch between the
 precipitation and the pot. evapotranspiration input.

Cemaneige

Implementation of the model described in:

Valéry, A. "Modélisation précipitations – débit sous influence nivale.
Élaboration d’un module neige et évaluation sur 380 bassins versants".
PhD thesis, Cemagref (Antony), AgroParisTech (Paris), 405 pp. (2010)

Explanation of the model parameters:

	CTG: snow-pack inertia factor

	Kf: day-degree factor

Model inputs for simulation:

	prec: Array of daily precipitation sum [mm]

	mean_temp: Array of the mean temperature [C]

	min_temp: Array of the minimum temperature [C]

	max_temp: Array of the maximum temperature [C]

	met_station_height: Height of the meteorological station [m]. Needed to
calculate the fraction of solid precipitation and optionally for the
extrapolation of the meteorological inputs.

	altitudes: (optionally) List of the median elevation of each elevation layer.

Class documentation

	
class rrmpg.models.Cemaneige(params=None)

	Interface to the Cemaneige snow routine.

This class builds an interface to the implementation of the Cemaneige snow
acounting model, originally developed by A. Valery [1] (french) and also
presented in [2] (english). This model should only be used with daily data.

If no model parameters are passed upon initialization, generates random
parameter set.

[1] Valéry, A. “Modélisation précipitations – débit sous influence nivale.
Élaboration d’un module neige et évaluation sur 380 bassins versants”.
PhD thesis, Cemagref (Antony), AgroParisTech (Paris), 405 pp. (2010)

[2] Audrey Valery, Vazken Andreassian, Charles Perrin. “‘As simple as
possible but not simpler’: What is useful in a temperature-based snow-
accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow
accounting routine in 380 Catchments.” Journal of Hydrology 517 (2014)
1176-1187.

	Parameters

	params – (optional) Dictonary containing all model parameters as a
seperate key/value pairs.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If a dictionary of model parameters is passed but one of
 the parameters is missing.

	
fit(obs, prec, mean_temp, min_temp, max_temp, met_station_height, snow_pack_init=0, thermal_state_init=0, altitudes=[])

	Fit the Cemaneige model to a observed timeseries

This functions uses scipy’s global optimizer (differential evolution)
to find a good set of parameters for the model, so that the observed
timeseries is simulated as good as possible.

	Parameters

	
	obs – Array of the observed timeseries [mm]

	prec – Array of daily precipitation sum [mm]

	mean_temp – Array of the mean temperature [C]

	min_temp – Array of the minimum temperature [C]

	max_temp – Array of the maximum temperature [C]

	met_station_height – Height of the meteorological station [m].
Needed to calculate the fraction of solid precipitation and
optionally for the extrapolation of the meteorological inputs.

	snow_pack_init – (optional) Initial value of the snow pack storage

	thermal_state_init – (optional) Initial value of the thermal state
of the snow pack

	altitudes – (optional) List of median altitudes of each elevation
layer [m]

	Returns

	A scipy OptimizeResult class object.

	Return type

	res

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeErrror – If there is a size mismatch between the
 precipitation and the pot. evapotranspiration input.

	
get_default_bounds()

	Return the dictionary containing the default parameter bounds.

	
get_dtype()

	Return the custom model datatype.

	
get_parameter_names()

	Return the list of parameter names.

	
get_params()

	Return a dict with all model parameters and their current value.

	
get_random_params(num=1)

	Generate random sets of model parameters in the default bounds.

Samples num values for each model parameter from a uniform distribution
between the default bounds.

	Parameters

	num – (optional) Integer, specifying the number of parameter sets,
that will be generated. Default is 1.

	Returns

	A numpy array of the models custom data type, containing the at
random generated parameters.

	
set_params(params)

	Set model parameters to values passed in params.

	Parameters

	params – Either a dictonary containing model parameters as
key/value pairs or a numpy array of the models own custom
dtype. For the case of dictionaries, they can contain only one
model parameter or many/all. The naming of the parameters must
be identical to the names specified in the _param_list.
All parameter values must be numerical.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any parameter is not a numerical value.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the parameter dictonary contains a key, that
 doesn’t match any of the parameter names.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the numpy array of the parameter does not fit the
 custom data type of the model or it’s neither a dict nor a
 numpy ndarray.

	
simulate(prec, mean_temp, min_temp, max_temp, met_station_height, snow_pack_init=0, thermal_state_init=0, altitudes=[], return_storages=False, params=None)

	Simulate the snow-routine of the Cemaneige model.

This function checks the input data and prepares the data for the
actual simulation function, which is kept outside of the model class
(due to restrictions of Numba). Meteorological input arrays can be
either lists, numpy arrays or pandas Series.

In the original Cemaneige model, the catchment is divided into 5
subareas of different elevations with the each of them having the same
area. For each elevation layer, the snow routine is calculated
separately. Therefore, the meteorological input is extrapolated from
the height of the measurement station to the median height of each
sub-area. This feature is optional (also the number of elevation layer)
in this implementation an can be activated if the corresponding heights
of each elevation layer is passed as input. In this case, also the
height of the measurement station must be passed.

	Parameters

	
	prec – Array of daily precipitation sum [mm]

	mean_temp – Array of the mean temperature [C]

	min_temp – Array of the minimum temperature [C]

	max_temp – Array of the maximum temperature [C]

	met_station_height – Height of the meteorological station [m].
Needed to calculate the fraction of solid precipitation and
optionally for the extrapolation of the meteorological inputs.

	snow_pack_init – (optional) Initial value of the snow pack storage

	thermal_state_init – (optional) Initial value of the thermal state
of the snow pack

	altitudes – (optional) List of median altitudes of each elevation
layer [m]

	return_storages – (optional) Boolean, indicating if the model
storages should also be returned.

	params – (optional) Numpy array of parameter sets, that will be
evaluated a once in parallel. Must be of the models own custom
data type. If nothing is passed, the parameters, stored in the
model object, will be used.

	Returns

	An array with the simulated stream flow and optional one array for
each of the two storages.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there is a size mismatch between meteorological
 input arrays.

CemaneigeGR4J

This model couples the Cemaneige snow routine with the GR4J model into one model.

Valéry, A. "Modélisation précipitations – débit sous influence nivale.
Élaboration d’un module neige et évaluation sur 380 bassins versants".
PhD thesis, Cemagref (Antony), AgroParisTech (Paris), 405 pp. (2010)

Explanation of the model parameters:

	CTG: snow-pack inertia factor

	Kf: day-degree factor

	x1: maximum capacity of the production store [mm]

	x2: groundwater exchange coefficient [mm]

	x3: one day ahead maximum capacity of the routing store [mm]

	x4: time base of the unit hydrograph UH1 [days]

Model inputs for simulation:

	prec: Array of daily precipitation sum [mm]

	mean_temp: Array of the mean temperature [C]

	min_temp: Array of the minimum temperature [C]

	max_temp: Array of the maximum temperature [C]

	etp: Array mean potential evapotranspiration [mm]

	met_station_height: Height of the meteorological station [m]. Needed to
calculate the fraction of solid precipitation and optionally for the
extrapolation of the meteorological inputs.

	altitudes: (optionally) List of the median elevation of each elevation layer.

Class documentation

	
class rrmpg.models.CemaneigeGR4J(params=None)

	Interface to the Cemaneige + GR4J coupled hydrological model.

This class builds an interface to the coupled model, consisting of the
Cemaneige snow routine [1] and the GR4J model [2]. This model should only
be used with daily data.

If no model parameters are passed upon initialization, generates random
parameter set.

[1] Valéry, A. “Modélisation précipitations – débit sous influence nivale.
Élaboration d’un module neige et évaluation sur 380 bassins versants”.
PhD thesis, Cemagref (Antony), AgroParisTech (Paris), 405 pp. (2010)

[2] Perrin, Charles, Claude Michel, and Vazken Andréassian. “Improvement
of a parsimonious model for streamflow simulation.” Journal of hydrology
279.1 (2003): 275-289.

	Parameters

	params – (optional) Dictionary containing all model parameters as a
separate key/value pairs.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If a dictionary of model parameters is passed but one of
 the parameters is missing.

	
fit(obs, prec, mean_temp, min_temp, max_temp, etp, met_station_height, snow_pack_init=0, thermal_state_init=0, s_init=0, r_init=0, altitudes=[])

	Fit the Cemaneige + GR4J coupled model to a observed timeseries

This functions uses scipy’s global optimizer (differential evolution)
to find a good set of parameters for the model, so that the observed
timeseries is simulated as good as possible.

	Parameters

	
	obs – Array of the observed timeseries [mm]

	prec – Array of daily precipitation sum [mm]

	mean_temp – Array of the mean temperature [C]

	min_temp – Array of the minimum temperature [C]

	max_temp – Array of the maximum temperature [C]

	etp – Array of mean potential evapotranspiration [mm]

	met_station_height – Height of the meteorological station [m].
Needed to calculate the fraction of solid precipitation and
optionally for the extrapolation of the meteorological inputs.

	snow_pack_init – (optional) Initial value of the snow pack storage

	thermal_state_init – (optional) Initial value of the thermal state
of the snow pack

	s_init – (optional) Initial value of the production storage as
fraction of x1.

	r_init – (optional) Initial value of the routing storage as fraction
of x3.

	altitudes – (optional) List of median altitudes of each elevation
layer [m]

	Returns

	A scipy OptimizeResult class object.

	Return type

	res

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeErrror – If there is a size mismatch between the
 precipitation and the pot. evapotranspiration input.

	
get_default_bounds()

	Return the dictionary containing the default parameter bounds.

	
get_dtype()

	Return the custom model datatype.

	
get_parameter_names()

	Return the list of parameter names.

	
get_params()

	Return a dict with all model parameters and their current value.

	
get_random_params(num=1)

	Generate random sets of model parameters in the default bounds.

Samples num values for each model parameter from a uniform distribution
between the default bounds.

	Parameters

	num – (optional) Integer, specifying the number of parameter sets,
that will be generated. Default is 1.

	Returns

	A numpy array of the models custom data type, containing the at
random generated parameters.

	
set_params(params)

	Set model parameters to values passed in params.

	Parameters

	params – Either a dictonary containing model parameters as
key/value pairs or a numpy array of the models own custom
dtype. For the case of dictionaries, they can contain only one
model parameter or many/all. The naming of the parameters must
be identical to the names specified in the _param_list.
All parameter values must be numerical.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any parameter is not a numerical value.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the parameter dictonary contains a key, that
 doesn’t match any of the parameter names.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the numpy array of the parameter does not fit the
 custom data type of the model or it’s neither a dict nor a
 numpy ndarray.

	
simulate(prec, mean_temp, min_temp, max_temp, etp, met_station_height, snow_pack_init=0, thermal_state_init=0, s_init=0, r_init=0, altitudes=[], return_storages=False, params=None)

	Simulate the Cemaneige + GR4J coupled hydrological model.

This function checks the input data and prepares the data for the
actual simulation function, which is kept outside of the model class
(due to restrictions of Numba). Meteorological input arrays can be
either lists, numpy arrays or pandas Series.

In the original Cemaneige model, the catchment is divided into 5
subareas of different elevations with the each of them having the same
area. For each elevation layer, the snow routine is calculated
separately. Therefore, the meteorological input is extrapolated from
the height of the measurement station to the median height of each
sub-area. This feature is optional (also the number of elevation layer)
in this implementation an can be activated if the corresponding heights
of each elevation layer is passed as input. In this case, also the
height of the measurement station must be passed.

	Parameters

	
	prec – Array of daily precipitation sum [mm]

	mean_temp – Array of the mean temperature [C]

	min_temp – Array of the minimum temperature [C]

	max_temp – Array of the maximum temperature [C]

	etp – Array of mean potential evapotranspiration [mm]

	met_station_height – Height of the meteorological station [m].
Needed to calculate the fraction of solid precipitation and
optionally for the extrapolation of the meteorological inputs.

	snow_pack_init – (optional) Initial value of the snow pack storage

	thermal_state_init – (optional) Initial value of the thermal state
of the snow pack

	s_init – (optional) Initial value of the production storage as
fraction of x1.

	r_init – (optional) Initial value of the routing storage as fraction
of x3.

	altitudes – (optional) List of median altitudes of each elevation
layer [m]

	return_storages – (optional) Boolean, indicating if the model
storages should also be returned.

	params – (optional) Numpy array of parameter sets, that will be
evaluated a once in parallel. Must be of the models own custom
data type. If nothing is passed, the parameters, stored in the
model object, will be used.

	Returns

	An array with the simulated stream flow and optional one array for
each of the two storages.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the inputs contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If one of the inputs has an incorrect datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there is a size mismatch between meteorological
 input arrays.

Tools

Documentation of all functions defined within the rrmpg.tools module.

Monte-Carlo

	
rrmpg.tools.monte_carlo.monte_carlo(model, num, qobs=None, **kwargs)

	Perform Monte-Carlo-Simulation.

This function performs a Monte-Carlo-Simulation for any given hydrological
model of this repository.

	Parameters

	
	model – Any instance of a hydrological model of this repository.

	num – Number of simulations.

	qobs – (optional) Array of observed streamflow.

	**kwargs – Keyword arguments, matching the inputs the model needs to
perform a simulation (e.g. qobs, precipitation, temperature etc.).
See help(model.simulate) for model input requirements.

	Returns

	A dictonary containing the following two keys [‘params’, ‘qsim’]. The
key ‘params’ contains a numpy array with the model parameter of each
simulation. ‘qsim’ is a 2D numpy array with the simulated streamflow
for each simulation. If an array of observed streamflow is provided,
one additional key is returned in the dictonary, being ‘mse’. This key
contains an array of the mean-squared-error for each simulation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any input contains invalid values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any of the inputs has a wrong datatype.

Utils

Documentation of all functions defined within the rrmpg.utils module.

Plot utils

	
rrmpg.utils.plot_utils.plot_qsim_range(qsim, x_vals=None, qobs=None)

	Plot the range of multiple simulations and their mean.

This function plots the quantiles of multiple simulations as a filled area
and the mean as a line. The (0.05, 0.95) and the (0.25, 0.75) quantile
are plotted as different colored areas and the mean as a solid line. If
observations are also passed, they are plotted as well as a solid line.

	Parameters

	
	qsim – 2D array of simulations. Shape must be (num_timesteps, num_sims)

	x_vals – (optional) 1D array, that will be used as x-axes values.
(e.g. date)

	qobs – (optional) 1D arary of oversations.

	Returns

	A handle to the matplotlib figure.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – For incorrect inputs.

Metrics

	
rrmpg.utils.metrics.calc_mse(obs, sim)

	Calculate the mean squared error.

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The MSE value for the simulation, compared to the observation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the arrays are not of equal size or have non-numeric
 values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arrays is not a supported datatype.

	
rrmpg.utils.metrics.calc_rmse(obs, sim)

	Calculate the root mean squared error.

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The RMSE value for the simulation, compared to the observation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the arrays are not of equal size or have non-numeric
 values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arrays is not a supported datatype.

	
rrmpg.utils.metrics.calc_nse(obs, sim)

	Calculate the Nash-Sutcliffe model efficiency coefficient.

Original Publication:
Nash, J. Eamonn, and Jonh V. Sutcliffe. “River flow forecasting through
conceptual models part I—A discussion of principles.” Journal of
hydrology 10.3 (1970): 282-290.

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The NSE value for the simulation, compared to the observation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the arrays are not of equal size or have non-numeric
 values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arrays is not a supported datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If all values in qobs are equal. The NSE is not defined
 for this cases.

	
rrmpg.utils.metrics.calc_kge(obs, sim)

	Calculate the Kling-Gupta-Efficiency.

Calculate the original KGE value following [1].

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The KGE value for the simulation, compared to the observation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the arrays are not of equal size or have non-numeric
 values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arrays is not a supported datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the mean or the standard deviation of the observations
 equal 0.

[1] Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009).
Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. Journal of Hydrology,
377(1-2), 80-91.

	
rrmpg.utils.metrics.calc_alpha_nse(obs, sim)

	Calculate the alpha decomposition of the NSE.

Calculate the alpha decomposition of the NSE following [1].

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The alpha decomposition of the NSE of the simulation compared to the
observation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the arrays are not of equal size or have non-numeric
 values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arrays is not a supported datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the standard deviation of the observations
 equal 0.

[1] Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009).
Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. Journal of Hydrology,
377(1-2), 80-91.

	
rrmpg.utils.metrics.calc_beta_nse(obs, sim)

	Calculate the beta decomposition of the NSE.

Calculate the beta decomposition of the NSE following [1].

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The beta decomposition of the NSE of the simulation compared to the
observation.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the arrays are not of equal size or have non-numeric
 values.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arrays is not a supported datatype.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the mean or the standard deviation of the observations
 equal 0.

[1] Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009).
Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. Journal of Hydrology,
377(1-2), 80-91.

	
rrmpg.utils.metrics.calc_r(obs, sim)

	Calculate the pearson r coefficient.

Interface to the scipy implementation of the pearson r coeffienct.

	Parameters

	
	obs – Array of the observed values

	sim – Array of the simulated values

	Returns

	The pearson r coefficient of the simulation compared to the observation.

Array Checks

	
rrmpg.utils.array_checks.check_for_negatives(arr)

	Check if array contains negative number.

Numba optimized function to check if a numpy array containes a negative
value. Returns, whenever the first negative function is found.

	Parameters

	arr – Numpy array

	Returns

	True, if the array contains at least on negative number and False, if
the array contains no negative number.

	
rrmpg.utils.array_checks.validate_array_input(arr, dtype, arr_name)

	Check if array has correct type and is numerical.

This function checks if the input is either a list, numpy.ndarray or
pandas.Series of numerical values, converts it to a numpy.ndarray and
throws an error in case of incorrect data.

	Parameters

	
	arr – Array of data

	dtype – One of numpy’s dtypes

	arr_name – String specifing the variable name, so that the error
message can be adapted correctly.

	Returns

	A as numpy.ndarray converted array of values with a datatype
specified in the input argument.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In case non-numerical data is passed

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the error is neither a list, a numpy.ndarray nor a
 pandas.Series

Data

Documentation of all functions and classes defined within the rrmpg.data module.

CAMELSLoader

	
class rrmpg.data.CAMELSLoader

	Interface for loading basin data from the CAMELS dataset.

This class provides an easy to use interface to load different basins from
the CAMELS [1] dataset provided within this Python package. CAMELS stands
for Catchment Attributes for Large-Sample Studies and is a hydrological
dataset provided by NCAR for 671 catchments in the USA. The data entire
data can be downloaded for free at [2]. Within this package we provide the
data of just a few catchments as toy data for this package.

[1] Addor, N., A.J. Newman, N. Mizukami, and M.P. Clark, 2017: The CAMELS
data set: catchment attributes and meteorology for large-sample studies.
version 2.0. Boulder, CO: UCAR/NCAR. doi:10.5065/D6G73C3Q

[2] https://ncar.github.io/hydrology/datasets/CAMELS_attributes

	
get_basin_numbers()

	Return a list of all available basin numbers.

	
get_station_height(basin_number)

	Return the elevation of the meteorological station of one basin.

	Parameters

	basin_number – String of the basin number that shall be loaded.

	Returns

	The elevation of the meteorological station.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the basin number is an invalid number. Check the
 .get_basin_numbers() function for a list of all available
 basins.

	
load_basin(basin_number)

	Load basin data pandas Dataframe.

Load the meteorological data, as well as observed discharge and modeled
potential evapotranspiration of the specified basin from the CAMELS
data set.

	Parameters

	basin_number – String of the basin number that shall be loaded.

	Returns

	A pandas DataFrame with the data of the basin.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the basin number is an invalid number. Check the
 .get_basin_numbers() function for a list of all available
 basins.

Examples

Here will follow some example applications of the RRMPG library.

	Numba Speed-Test

	Model API Example

Numba Speed-Test

In this notebook I’ll test the speed of a simple hydrological model (the
ABC-Model [1]) implemented in pure Python, Numba and Fortran. This
should only been seen as an example of the power of numba in speeding up
array-oriented python functions, that have to be processed using loops.
This is for example the case for hydrological models that have to be
processed timestep after timestep to update model states (depending on
previous states) and calculate flows. Python is natively very slow for
this kind of functions (loops). Normally hydrological (as well as
meterological and environmental) models are implemented in Fortran or
C/C++ which are known for their speed. The downside is, that this
languages are quite harder to start with and the code often seems overly
complicated for beginner. Numba is a library that performs just-in-time
compilation on Python code and can therefore dramatically increase the
speed of Python functions (without having to change much in the code).

Anyway, this is not meant to give an introduction to numba, but just to
compare the execution speed against pure Python and Fortan. For
everybody, who is interested in further explanations on Numba see: -
Gil Forsyth’s & Lorena Barba’s tutorial from the SciPy
2017 [https://www.youtube.com/watch?v=1AwG0T4gaO0] - The numba
homepage, which includes examples [https://numba.pydata.org/]

If you want to reproduce the results and you have installed a conda
environment using the environment.yml from the rrmpg github
repository [https://github.com/kratzert/RRMPG/blob/master/environment.yml]
make sure to additionally install cython:

conda install -c anaconda cython

[1] Myron B. Fiering “Streamflow synthesis” Cambridge, Harvard
University Press, 1967. 139 P. (1967).

Notebook setups
import numpy as np

from numba import njit, float64
from timeit import timeit

We’ll use an array of random numbers as input for the model. Since we
only want to test the execution time, this will work for now.

Let's an array of 10 mio values
rain = np.random.random(size=10000000)

Next we are going to define three different functions:

	abc_model_py: An implementation of the ABC-Model using pure
Python.

	abc_model_numba: A numba version of the ABC-model. The
just-in-time compilation is achieved by adding a numba decorator over
the function definition. I use the @njit to make sure an error is
raised if numba can’t compile the function.

	abc_model_fortan: A fortan version of the ABC-model. In previous
version this was done using the f2py module which added some overhead
to the function call and was no fair benchmark (see pull request #3).
Now the Fortran implementation is wrapped in a Cython function.

Note how for this simple model the only difference between the pure
Python version and the Numba version is the decorator. The entire code
of the model is the same.

pure Python implementation
def abc_model_py(a, b, c, rain):
 outflow = np.zeros((rain.size), dtype=np.float64)
 state_in = 0
 state_out = 0
 for i in range(rain.size):
 state_out = (1 - c) * state_in + a * rain[i]
 outflow[i] = (1 - a - b) * rain[i] + c * state_in
 state_in = state_out
 return outflow

numba version of the ABC-model
@njit(['float64[:](float64,float64,float64,float64[:])'])
def abc_model_numba(a, b, c, rain):
 outflow = np.zeros((rain.size), dtype=np.float64)
 state_in = 0
 state_out = 0
 for i in range(rain.size):
 state_out = (1 - c) * state_in + a * rain[i]
 outflow[i] = (1 - a - b) * rain[i] + c * state_in
 state_in = state_out
 return outflow

%%file abc.f90

module abc
use iso_c_binding, only: c_int, c_double
implicit none
integer, parameter :: dp = kind(0d0)
private
public c_abc_model_fortran

contains

subroutine c_abc_model_fortran(n, a, b, c, inflow, outflow) bind(c)
integer(c_int), intent(in), value :: n
real(c_double), intent(in), value :: a, b, c
real(c_double), intent(in) :: inflow(n)
real(c_double), intent(out) :: outflow(n)
call abc_model(a, b, c, inflow, outflow)
end subroutine

subroutine abc_model(a, b, c, inflow, outflow)
real(dp), intent(in) :: a, b, c, inflow(:)
real(dp), intent(out) :: outflow(:)
real(dp) :: state_in, state_out
integer :: t
state_in = 0
do t = 1, size(inflow)
 state_out = (1 - c) * state_in + a * inflow(t)
 outflow(t) = (1 - a - b) * inflow(t) + c * state_in
 state_in = state_out
end do
end subroutine

end module

Writing abc.f90

%%file abc_py.pyx

from numpy cimport ndarray
from numpy import empty, size

cdef extern:
 void c_abc_model_fortran(int n, double a, double b, double c, double *inflow, double *outflow)

def abc_model_fortran(double a, double b, double c, ndarray[double, mode="c"] inflow):
 cdef int N = size(inflow)
 cdef ndarray[double, mode="c"] outflow = empty(N, dtype="double")
 c_abc_model_fortran(N, a, b, c, &inflow[0], &outflow[0])
 return outflow

Writing abc_py.pyx

Compile the Fortran and Cython module

%%bash
set -e
#set -x
Debug flags
#FFLAGS="-Wall -Wextra -Wimplicit-interface -fPIC -fmax-errors=1 -g -fcheck=all -fbacktrace"
#CFLAGS="-Wall -Wextra -fPIC -fmax-errors=1 -g"
Release flags
FFLAGS="-fPIC -O3 -march=native -ffast-math -funroll-loops"
CFLAGS="-fPIC -O3 -march=native -ffast-math -funroll-loops"
gfortran -o abc.o -c abc.f90 $FFLAGS
cython abc_py.pyx
gcc -o abc_py.o -c abc_py.c -I$CONDA_PREFIX/include/python3.6m/ $CFLAGS
gcc -o abc_py.so abc_py.o abc.o -L$CONDA_PREFIX/lib -lpython3.6m -lgfortran -shared

Now we can import it like a normal Python module
from abc_py import abc_model_fortran

Now we’ll use the timeit package to measure the execution time of
each of the functions

Measure the execution time of the Python implementation
py_time = %timeit -o abc_model_py(0.2, 0.6, 0.1, rain)

5.83 s ± 70.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Measure the execution time of the Numba implementation
numba_time = %timeit -o abc_model_numba(0.2, 0.6, 0.1, rain)

33.3 ms ± 707 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Measure the execution time of the Fortran implementation
fortran_time = %timeit -o abc_model_fortran(0.2, 0.6, 0.1, rain)

23.7 ms ± 37.7 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

As you can see by the raw numbers, Fortran (as expected) is the fastest,
but what is interesting, that the Numba version of the ABC-Model does
not perform much worse. Let’s compare the numbers.

First we’ll compare the pure Python version, against the Numba version.
Remember, everthing we did was to add a decorator to the Python
function, the rest (the magic) is done by the Numba library.

py_time.best / numba_time.best

174.3980506055237

Wow, this is roughly a 205 x speed up by one single additional line of
code. Note that for more complicated models, we’ll have to adapt the
code a bit more, but in general it will stay very close to normal Python
code.

Now let’s see how the Numba version performs against Fortran, which is
still the standard in the modelling community of hydrology and
meteorology.

numba_time.best / fortran_time.best

1.3963906102603512

So the Fortran implementation is still faster but not much. We only need
less than 1,5x the time of the Fortran version if we run the Python code
optimized with the Numba library.

Note that this Fortran function is compiled using the GNU Fortran
compiler, which is open source and free. Using e.g. the Intel Fortran
compiler will certainly increase speed of the Fortran function, but I
think it’s only fair to compare two open source and free-of-charge
versions.

So what does this mean

We’ll see, but you will now have maybe a better idea of this project.
The thing is, we can implement models in Python, that have roughly the
performance of Fortran, but are at the same time less complex to
implement and play around with. We can also save a lot of boilerplate
code we need with Fortran to compiler our code in the most optimal way.
We only need to follow some rules of the Numba library and for the rest,
add one decorator to the function definition. We can run 1000s of
simulations and don’t have to wait for ages and we can stay the entire
time in one environment (for simulating and evaluating the results). The
hope is, that this will help fellow students/researchers to better
understand hydrological models and lose fear of what might seem
intimidating at first, follwing a quote by Richard Feynman:

“What I can not create, I do not understand” - Richard Feynman

Model API Example

In this notebook, we’ll explore some functionality of the models of this
package. We’ll work with the coupled CemaneigeGR4j model that is
implemented in rrmpg.models module. The data we’ll use, comes from
the CAMELS [1] data set. For some basins, the data is provided within
this Python library and can be easily imported using the
CAMELSLoader class implemented in the rrmpg.data module.

In summary we’ll look at: - How you can create a model instance. - How
we can use the CAMELSLoader. - How you can fit the model parameters to
observed discharge by: - Using one of SciPy’s global optimizer -
Monte-Carlo-Simulation - How you can use a fitted model to calculate the
simulated discharge.

[1] Addor, N., A.J. Newman, N. Mizukami, and M.P. Clark, 2017: The
CAMELS data set: catchment attributes and meteorology for large-sample
studies. version 2.0. Boulder, CO: UCAR/NCAR. doi:10.5065/D6G73C3Q

Imports and Notebook setup
from timeit import timeit

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from rrmpg.models import CemaneigeGR4J
from rrmpg.data import CAMELSLoader
from rrmpg.tools.monte_carlo import monte_carlo
from rrmpg.utils.metrics import calc_nse

Create a model

As a first step let us have a look how we can create one of the models
implemented in rrmpg.models. Basically, for all models we have two
different options: 1. Initialize a model without specific model
parameters. 2. Initialize a model with specific model parameters.

The documentation [http://rrmpg.readthedocs.io] provides a list of
all model parameters. Alternatively we can look at help() for the
model (e.g. help(CemaneigeGR4J)).

If no specific model parameters are provided upon intialization, random
parameters will be generated that are in between the default parameter
bounds. We can look at these bounds by calling .get_param_bounds()
method on the model object and check the current parameter values by
calling .get_params() method.

For now we don’t know any specific parameter values, so we’ll create one
with random parameters.

model = CemaneigeGR4J()
model.get_params()

{'CTG': 0.3399735717656279,
 'Kf': 0.8724652383290821,
 'x1': 427.9652389107806,
 'x2': 0.9927197563086638,
 'x3': 288.20205223188475,
 'x4': 1.4185137324914372}

Here we can see the six model parameters of CemaneigeGR4J model and
their current values.

Using the CAMELSLoader

To have data to start with, we can use the CAMELSLoader class to
load data of provided basins from the CAMELS dataset. To get a list of
all available basins that are provided within this library, we can use
the .get_basin_numbers() method. For now we will use the provided
basin number 01031500.

df = CAMELSLoader().load_basin('01031500')
df.head()

 Wiki

Wiki

Here I’ll add soon detailed explanations for each of the implemented models.

 How to contribute

How to contribute

Since this is a community project, I would deeply encourage any developer or hydrologist to contribute to the development of this project. Different ways of how you can contribute exist and not all require programming skills. If you want to contribute, make sure you have the latest version and everything is setup correctly (see Getting started).

Spell checking

Since English is not my native-language, I’m sure there are a lot of mistakes in this documentation or the code documentation itself. Feel free to make a pull request on GitHub (or open an issue or write me an email, whatever is the most comfortable for you) and I’ll gladly correct the mistakes.

Contribute to the wiki

The Wiki should give a more detailed description of the model (including e.g. historical background and application examples). If feasable, also visualizations of the model structure can be added.

The idea is, to have a summary of the model, that provides enough information, such that anyone without previous knowledge of the model understands the model capabilities/weaknesses and knows what the model is doing. Articles don’t have to be written in one push and can be extended in future commits by other contributers.

What do you need?

The entire documentation is created using Sphinx [http://www.sphinx-doc.org] with reStructuredText (rst: Wikipedia [https://en.wikipedia.org/wiki/ReStructuredText] , Quick Ref [http://docutils.sourceforge.net/docs/user/rst/quickref.html]), which is lightweight markup language. Basically you can write rst-files with any editor, I personally use the free Atom-Editor [https://atom.io/]. If you want to create a new entry in the wiki for one of the models, simply create a new rst-file and start writing. In the case you want to extend/edit an existing model entry, simply edit the corresponding rst-file.

To compile the documentation and create the html output from the rst-files locally you further need Python installed with various packages. I highly recommend using Anaconda [https://www.continuum.io/downloads], which ships with a lot of useful packages. In general it’s a good practise to have different environments of Python for different projects you are working on (Read this link [http://docs.python-guide.org/en/latest/dev/virtualenvs/] for an introduction to Python environments) and Anaconda comes with its own way for organising environments. In the repository I added a rtd_environment.yml [https://github.com/kratzert/RRMPG/blob/master/rtd_environment.yml] file, which creates a new environment for you with everything you need compile the documentation locally. Simply download the rtd_environment.yml [https://github.com/kratzert/RRMPG/blob/master/rtd_environment.yml] file, then enter the terminal and enter:

conda env create -f rtd_environment.yml

You can then activate the environment by entering:

on linux and macOS
source activate docenv3

on windows
activate docenv3

To leave an environment enter

on linux and macOS
source deactivate

on windows
deactivate

For further details on Anaconda environments see here [https://conda.io/docs/user-guide/tasks/manage-environments.html].

After you have made changes to the documentation and you want to see the result as a html-page, set your terminal to rrmpg/docs and enter:

on linux and macOS
make html

on windows
make.bat html

If everything has compiled correctly you should find an index.html in rrmpg/docs/build/html.

Other options

Anyway, if this might seem to complicated for you, you can always send me your text by email (f.kratzert[at]gmail.com) or create an issue on GitHub and I’ll do the rest.

Important note

This should be commonsense but I would like to remind you to cite every work of others (may it be publications, homepages, images etc.) you use in what ever you write.

Contribute to the code base

If you find any mistake/bug in the code or want to add new functionality to the code base, you should make sure that your code satisfies the following points.

	Your code should follow the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html] and most importantly the docstrings (because the code documentation is autogenerated by the docstrings in the code). See the comments section [https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments] for an example or look at the code of this repository.

	The more you comment the better. Although the code should be selfexplaning at some points if you use good variable names, remember that also Python beginners might look at the code.

	Add unittests for newly added functions/classes and make sure that all test are passed (the new, as well as the existing ones!).

Development of a new model

All models should inherit from the BaseModel defined in models.basemodel. By doing so, at lot of functionality is already added to your new model, without you having to write one line of code. See basemodel.py [https://github.com/kratzert/RRMPG/blob/master/rrmpg/models/basemodel.py]
for all the functions that will be inherited.
The skelleton of all implemented models should be equal (so that other functions, like monte_carlo(), can take any model as input) and look like this:

from numba import njit
from .basemodel import BaseModel

class NewModel(BaseModel)
 """Model explanation comes here.

 Args:
 List of all input arguments comes here (mandatory and optional)

 """

 def __init__(self, params=None, **kwargs):
 """Docstring of __init__ function comes here.

 You should set the params input to None as default. By doing so,
 random parameters will be generated if no model parameters are
 passed during initialization. If the model has further mandatory
 inputs (like catchment area etc.) add them here.

 """
 super().__init__(params=params)

 def simulate(self, *args, **kwargs):
 """Docstring of simulate function comes here.

 Make sure to document all the inputs that are needed to run a
 simulation of your model.
 This function only validates and prepares all inputs and then calls
 a class extern model function, see below.

 """
 pass

 def fit(self, *args, **kwargs):
 """Docstring of fit function comes here.

 Make sure to document all the inputs that are needed to run this
 function.
 This function validates and prepares all inputs in a way, that we
 can use scipy.optimize.minimize to find an optimal parameter set.
 The loss function is defined externally (see below).

 """
 pass

def _loss(X, *args):
 """Objective function used by the scipy optimizer.

 This function is used to calculate the model performance for a set X of
 parameters and must return a skalar. The optimizer tries to minimize
 this return value. For further explanation of how to build such a
 function read the scipy.optimizer.minimize documentation of look at the
 already implemented models.

 """

 pass

@njit
def _simulate(*args):
 """Here comes the real model simulation function.

 You have two options here:
 1. Already try to implement a numba optimized version of your model
 (add the @njit decorator).
 2. Or implement your model in pure python and I will afterwards
 optimize your function (remove @njit decorator.)

 """
 pass

 Index

Index

 A
 | C
 | F
 | G
 | H
 | L
 | M
 | P
 | S
 | V

A

 	
 	ABCModel (class in rrmpg.models)

C

 	
 	calc_alpha_nse() (in module rrmpg.utils.metrics)

 	calc_beta_nse() (in module rrmpg.utils.metrics)

 	calc_kge() (in module rrmpg.utils.metrics)

 	calc_mse() (in module rrmpg.utils.metrics)

 	calc_nse() (in module rrmpg.utils.metrics)

 	
 	calc_r() (in module rrmpg.utils.metrics)

 	calc_rmse() (in module rrmpg.utils.metrics)

 	CAMELSLoader (class in rrmpg.data)

 	Cemaneige (class in rrmpg.models)

 	CemaneigeGR4J (class in rrmpg.models)

 	check_for_negatives() (in module rrmpg.utils.array_checks)

F

 	
 	fit() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

G

 	
 	get_basin_numbers() (rrmpg.data.CAMELSLoader method)

 	get_default_bounds() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

 	get_dtype() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

 	get_parameter_names() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

 	
 	get_params() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

 	get_random_params() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

 	get_station_height() (rrmpg.data.CAMELSLoader method)

 	GR4J (class in rrmpg.models)

H

 	
 	HBVEdu (class in rrmpg.models)

L

 	
 	load_basin() (rrmpg.data.CAMELSLoader method)

M

 	
 	monte_carlo() (in module rrmpg.tools.monte_carlo)

P

 	
 	plot_qsim_range() (in module rrmpg.utils.plot_utils)

S

 	
 	set_params() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

 	
 	simulate() (rrmpg.models.ABCModel method)

 	(rrmpg.models.Cemaneige method)

 	(rrmpg.models.CemaneigeGR4J method)

 	(rrmpg.models.GR4J method)

 	(rrmpg.models.HBVEdu method)

V

 	
 	validate_array_input() (in module rrmpg.utils.array_checks)

nav.xhtml

 Table of Contents

 		
 Welcome to RRMPG’s documentation!

 		
 Introduction

 		
 Idea

 		
 You want to contribute?

 		
 Contributors

 		
 Contact

 		
 Getting started

 		
 Setting up Python

 		
 Downloading the source code

 		
 Setting up RRMPGs Python dependencies

 		
 Installing the RRMPG package

 		
 Documentation

 		
 Models

 		
 ABC-Model

 		
 HBV education

 		
 GR4J

 		
 Cemaneige

 		
 CemaneigeGR4J

 		
 Tools

 		
 Monte-Carlo

 		
 Utils

 		
 Plot utils

 		
 Metrics

 		
 Array Checks

 		
 Data

 		
 CAMELSLoader

 		
 Examples

 		
 Numba Speed-Test

 		
 Model API Example

 		
 Create a model

 		
 Using the CAMELSLoader

 		
 Fit the model to observed discharge

 		
 Calculate simulated discharge

 		
 Wiki

 		
 How to contribute

 		
 Spell checking

 		
 Contribute to the wiki

 		
 What do you need?

 		
 Other options

 		
 Important note

 		
 Contribute to the code base

 		
 Development of a new model

_static/plus.png

_static/github_download_zip.png
